Supporting large scale offshore wind deployment Foundation Ex

Ana Vega Kurson 10th May 2022

Motivation

How large is large?

35 GW – 2020 installed capacity <u>Global Offshore Wind Report 2021, GWEC</u>

$400 \; GW - 2035$ predictions

2H 2021 Offshore Wind Market Outlook, Bloomberg NEF

1,400 GW - 2050 aspirations

The Power of Our Ocean, OREAC

71,000 GW – global potential

Global Offshore Wind Technical Potential, The World Bank

2050 ambitions

Delivering data-driven insight **SCALE**

Model setup

Calculation

LCOE =

\sum lifetime energy generation

Inputs

ARUP

WTG + Foundations

- CAPEX includes:
 - Supply
 - Installation

 $((\bullet))$

ARUP

Wave

Transmission

Onshore substation connection points

HVAC vs HVDC

Operations & maintenance

- OPEX O&M considers:
 - Major/minor/preventive repairs
 - Distance to port
 - Maintenance strategy
 - Metocean conditions

Annual Energy Production

- Net capacity factor is calculated taking into account:
 - turbine, wind speed AEP
 - availability calculated considering weather downtime
 - electrical losses
 - wake losses
 - 1% 'other' losses

ARUP

Geospatial factors

Other considerations

- Environmental
- Environmentally protected sites
- Earthquakes zones
- Volcanic areas
- Hurricane paths

- Existing renewable
- Infrastructur
 - leasing sitesCables and pipes
 - O&G platforms
 - CCS lease areas
 - Mineral
 - exploitation

- Fishing areas
- Shipping lanes
- Traffic separation schemes
- Military areas
- Airport and radar

ARUP Deployment model **Combining cost and geospatial factors** 1 0 LCOE Loss function Geospatial factors

Deployment model

Time domain

ARUP Loss function

Deployment timeline

Deployment model

Automating

Output

Putting it all together

Example project output from *Future Offshore Wind Scenarios* delivered for BEIS, The Crown Estate and Crown Estate Scotland

Looking forward

What next?

Data to unlock large scale offshore wind

Data driven approach to assess multiple scenarios & risks

